import numpy as np
from astropy.constants import M_sun
from astropy import units as u
from scipy.integrate import solve_ivp
# class for the Weaver et al. (1977) stellar wind solution
# initiated with the
# terminal velocity v_inf
# mass loss rate M_dot
# background density rho_0
# which can be used to calculate the density and velocity at time t.
[docs]
class Weaver:
def __init__(self, v_inf, M_dot, rho_0, p_0, num_xi=100, gamma=5 / 3):
# input wind parameters
## terminal velocity of the wind
self.v_inf = v_inf
## mass loss rate of the wind
self.M_dot = M_dot
## background density of the ISM
self.rho_0 = rho_0
## background pressure of the ISM
self.p_0 = p_0
# derived wind parameters
## mechanical luminosity of the wind
self.L_w = 0.5 * M_dot * v_inf**2
# constants
self.xi_crit = 0.86
self.alpha = 0.88
self.gamma = gamma
# number of points to calculate the shell profiles
self.num_xi = num_xi
# calculate the shell profiles
self.calculate_shell_profiles()
[docs]
def calculate_shell_profiles(self):
# integrate equations 6 to 7 in weaver II, with
# 3 * (U - xi) * U' - 2U + 3 P' / G = 0
# (U - xi) * G' / G + U' + 2U / xi = 0
# 3 * (U - xi) * P' - 3 * gamma * P * (U - xi) * G' / G - 4P = 0
# where ' denotes \partial_\xi
# from xi = 1 to xi = xi_crit with G(1) = 4, U(1) = 3/4, P(1) = 3/4
# r = R_2 * xi; rho = rho_0 * G(xi)
# v = V_2 * U(xi); p = rho_0 * V_2^2 * P(xi)
gamma = self.gamma
# the equations are given by
def shell_equation(xi, y):
G, U, P = y
G_prime = (
2
* (-2 * xi**2 * G * U + 5 * xi * G * U**2 + 2 * xi * P - 3 * G * U**3)
* G
/ (
3
* xi
* (
gamma * xi * P
- gamma * P * U
- xi**3 * G
+ 3 * xi**2 * G * U
- 3 * xi * G * U**2
+ G * U**3
)
)
)
U_prime = (
2
* (-3 * gamma * P * U + xi**2 * G * U - xi * G * U**2 + 2 * xi * P)
/ (3 * xi * (gamma * P - xi**2 * G + 2 * xi * G * U - G * U**2))
)
P_prime = (
2
* (-2 * gamma * xi * U + 3 * gamma * U**2 + 2 * xi**2 - 2 * xi * U)
* G
* P
/ (3 * xi * (gamma * P - xi**2 * G + 2 * xi * G * U - G * U**2))
)
return [G_prime, U_prime, P_prime]
# initial conditions
G1 = 4
U1 = 3 / 4
P1 = 3 / 4
sol = solve_ivp(
shell_equation,
[1, self.xi_crit],
[G1, U1, P1],
t_eval=np.linspace(1, self.xi_crit, self.num_xi),
)
self.xi = np.flip(sol.t)
self.U = np.flip(sol.y[1])
self.G = np.flip(sol.y[0])
self.P = np.flip(sol.y[2])
# returns the inner shock radius R_1
[docs]
def get_inner_shock_radius(self, t):
return (
0.9
* self.alpha**1.5
* (1 / self.rho_0 * self.M_dot) ** (3 / 10)
* self.v_inf ** (1 / 10)
* t ** (2 / 5)
)
# returns the outer shock radius R_2
[docs]
def get_outer_shock_radius(self, t):
return self.alpha * (self.L_w * t**3 / self.rho_0) ** (1 / 5)
# returns the critical radius R_c
[docs]
def get_critical_radius(self, t):
return self.xi_crit * self.get_outer_shock_radius(t)
[docs]
def get_radial_range_wind_interior(self, delta_R, t):
R_1 = self.get_inner_shock_radius(t)
R_c = self.get_critical_radius(t)
return (
np.arange(
R_1.to(u.parsec).value,
R_c.to(u.parsec).value,
delta_R.to(u.parsec).value,
)
* u.parsec
)
[docs]
def get_radial_range_free_wind(self, delta_R, t):
R_1 = self.get_inner_shock_radius(t)
return (
np.arange(
delta_R.to(u.parsec).value,
R_1.to(u.parsec).value,
delta_R.to(u.parsec).value,
)
* u.parsec
)
[docs]
def get_radial_range_undisturbed_ism(self, delta_R, R_max, t):
R_2 = self.get_outer_shock_radius(t)
return (
np.arange(
R_2.to(u.parsec).value,
R_max.to(u.parsec).value,
delta_R.to(u.parsec).value,
)
* u.parsec
)
# get inner pressure
[docs]
def get_pressure_profile(self, delta_R, R_max, t):
# free wind profile (?????)
# Rs_free_wind = self.get_radial_range_free_wind(delta_R, t)
# pressures_free_wind = 1/20 * self.M_dot * self.v_inf / (4 * np.pi * Rs_free_wind ** 2)
# wind interior
Rs_wind_interior = (
np.array(
[
self.get_inner_shock_radius(t).to(u.parsec).value,
self.get_critical_radius(t).to(u.parsec).value,
]
)
* u.parsec
)
pressure_wind_interior = (
5
/ (22 * np.pi * (self.xi_crit * self.alpha) ** 3)
* (self.L_w**2 * self.rho_0**3) ** (1 / 5)
* t ** (-4 / 5)
* np.array([1, 1])
)
# shell
# as of the RH-jump conditions at a contact discontinuity,
# the pressure is continuous across the contact discontinuity
Rs_shell = self.xi * self.get_outer_shock_radius(t)
V2 = 15 / 25 * self.get_critical_radius(t) / t
pressure_shell = self.rho_0 * V2**2 * self.P
pressure_shell = (
pressure_shell / pressure_shell[0] * pressure_wind_interior[1]
) # why is this necessary? sth wrong with the solution??
# undisturbed ISM
Rs_undisturbed_ism = self.get_radial_range_undisturbed_ism(delta_R, R_max, t)
pressure_undisturbed_ism = self.p_0 * np.ones(len(Rs_undisturbed_ism))
return np.concatenate(
(Rs_wind_interior, Rs_shell, Rs_undisturbed_ism)
), np.concatenate(
(pressure_wind_interior, pressure_shell, pressure_undisturbed_ism)
)
# get velocity profile
[docs]
def get_velocity_profile(self, delta_R, R_max, t):
# free wind profile
Rs_free_wind = self.get_radial_range_free_wind(delta_R, t)
velocities_free_wind = self.v_inf * np.ones(len(Rs_free_wind))
# wind interior
Rs_wind_interior = self.get_radial_range_wind_interior(delta_R, t)
R_c = self.get_critical_radius(t)
velocities_wind_interior = (
11 / 25 * R_c**3 / (Rs_wind_interior**2 * t) + 4 / 25 * Rs_wind_interior / t
)
# shell
Rs_shell = self.xi * self.get_outer_shock_radius(t)
# by the RH-jump conditions at a contact discontinuity,
# the velocity at the beginning of the shell is the
# velocity at the end of the wind interior, so
V2 = 15 / 25 * R_c / t
velocities_shell = V2 * self.U / self.U[0]
# undisturbed ISM
# here the velocity is 0
Rs_undisturbed_ism = self.get_radial_range_undisturbed_ism(delta_R, R_max, t)
velocities_unisturbed_ism = np.zeros(len(Rs_undisturbed_ism))
return np.concatenate(
(Rs_free_wind, Rs_wind_interior, Rs_shell, Rs_undisturbed_ism)
), np.concatenate(
(
velocities_free_wind,
velocities_wind_interior,
velocities_shell,
velocities_unisturbed_ism,
)
)
# get density profile
[docs]
def get_density_profile(self, delta_R, R_max, t):
# free wind profile
Rs_free_wind = self.get_radial_range_free_wind(delta_R, t)
densities_free_wind = self.M_dot / (4 * np.pi * Rs_free_wind**2 * self.v_inf)
# profile in the wind interior
Rs_wind_interior = self.get_radial_range_wind_interior(delta_R, t)
R_c = self.get_critical_radius(t)
densities_wind_interior = (
0.628
* (self.M_dot**2 * self.rho_0**3 * self.v_inf ** (-6)) ** (1 / 5)
* t ** (-4 / 5)
* (1 - (Rs_wind_interior / R_c) ** 3) ** (-8 / 33)
)
# profile in the shell
Rs_shell = self.xi * self.get_outer_shock_radius(t)
densities_shell = self.rho_0 * self.G
# profile in the undisturbed ISM
Rs_undisturbed_ism = self.get_radial_range_undisturbed_ism(delta_R, R_max, t)
densities_unisturbed_ism = self.rho_0 * np.ones(len(Rs_undisturbed_ism))
return np.concatenate(
(Rs_free_wind, Rs_wind_interior, Rs_shell, Rs_undisturbed_ism)
), np.concatenate(
(
densities_free_wind,
densities_wind_interior,
densities_shell,
densities_unisturbed_ism,
)
)